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E-polynomials
The Hodge polynomial of a smooth projective variety  over

 is

with  the Hodge numbers  of  .  It
satisfies

scissor  relation:   for   a
closed subvariety

multiplicativity: 

This polynomial extends uniquely to any variety over  via
the Grothendieck ring

where  is called the E-polynomial of . Its coefficients
are given by the mixed Hodge numbers

of the mixed Hodge structure on the compactly supported
cohomology of [1].

Examples

, the Lefschetz motive

To compute , decompose

to find .

Complete intersections
The Hodge numbers of  a smooth hypersurface  of
degree  can be computed recursively from exact sequences

and cohomology of . This can be generalized as in [2] to
compute  the  Hodge  numbers  of  a  smooth  complete
intersection  from the degrees  of the hypersurfaces.

Application to representation varieties
Used in [3] to automize the computation of E-polynomials of

-representation varieties of closed surfaces

using Topological Quantum Field Theory: the E-polynomials
can  be  obtained  from the  powers  of  a  (large)  matrix  of
E-polynomials  of  smaller  varieties,  corresponding  to  a
decomposition of bordisms

For  upper triangular matrices of ranks  and :

the latter requiring to evaluate  E-polynomials.

What's next?

Find  more  efficient  methods  for  computing  the  Hodge
numbers for non-complete intersections

Prove  the  algorithm  terminates,  e.g.  find  a  numerical
invariant that decreases at each step

Optimize the implementation
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Setup: let  be the variety with ideal .
Recursively compute  as follows:

Base cases
if  then 

if  then 

Product varieties
if  and  do not share
variables, then , hence 

Factor equations
if  with  non-constant, then

Linear equations
if  with  not containing , then let  be given

by the , for , where  substituted for . Then

Blowups
if the singular locus  is non-empty, blow up  at ,
given by affine patches  and exceptional divisor . Then

Rehomogenizing
if  is non-singular, but the projective closure  is

singular at another affine patch  then

Smooth projective varieties
if  defines a smooth projective variety , compute

 from the Hodge numbers 
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