E-polynomials

The Hodge polynomial of a smooth projective variety X over \mathbb{C} is

$$
P(X)=\sum_{p, q}(-1)^{p+q} h^{p, q}(X) u^{p} v^{q}
$$

with $h^{p, q}(X)=\operatorname{dim} H^{q}\left(X, \Omega_{X}^{p}\right)$ the Hodge numbers of X. It satisfies

- scissor relation: $P(X)=P(Z)+P(X \backslash Z)$ for $\quad Z \subset X \quad$ a closed subvariety
- multiplicativity: $P(X \times Y)=P(X) \cdot P(Y)$

This polynomial extends uniquely to any variety over \mathbb{C} via the Grothendieck ring

$$
e: K\left(\operatorname{Var}_{\mathbb{C}}\right) \rightarrow \mathbb{Z}[u, v]
$$

where $e(X)$ is called the E-polynomial of X. Its coefficients are given by the mixed Hodge numbers

$$
h_{\text {mixed }}^{p, q, k}(X)=\operatorname{dim} \operatorname{Gr}_{F}^{p} \operatorname{Gr}_{p+q}^{W} H_{c}^{k}(X, \mathbb{C})
$$

of the mixed Hodge structure on the compactly supported cohomology of X [1].

Examples

- $e\left(\mathbb{A}^{1}\right)=e\left(\mathbb{P}^{1}\right)-e(\mathrm{pt})=u v=: q$, the Lefschetz motive
- $e\left(\mathbb{P}^{n}\right)=e\left(\mathbb{A}^{n}\right)+e\left(\mathbb{A}^{n-1}\right)+\cdots+e\left(\mathbb{A}^{1}\right)+e\left(\mathbb{A}^{0}\right)$

$$
=q^{n}+q^{n-1}+\cdots+q+1
$$

- To compute $e(\operatorname{SL}(2, \mathbb{C}))=e(\{a d-b c=1\})$, decompose $\mathrm{SL}(2, \mathbb{C})=\left\{a=0, b \neq 0, c=\frac{-1}{b}\right\} \sqcup\left\{a \neq 0, d=\frac{b c+1}{a}\right\}$ to find $e(\mathrm{SL}(2, \mathbb{C}))=\underset{(d)}{q(q-1)} \underset{(b)}{q^{2}} \underset{(b, c)}{(q-1)}=q^{3}-q$.

Complete intersections

The Hodge numbers of a smooth hypersurface $X \subset \mathbb{P}^{n}$ of degree d can be computed recursively from exact sequences

$$
\begin{gathered}
\left.0 \rightarrow \Omega_{\mathbb{P}^{n}}^{p}(-d) \rightarrow \Omega_{\mathbb{P}^{n}}^{p} \rightarrow \Omega_{\mathbb{P}^{n}}^{p}\right|_{X} \rightarrow 0 \\
\left.0 \rightarrow \Omega_{\mathbb{P}^{n}}^{p-1}(-d) \rightarrow \Omega_{\mathbb{P}^{n}}^{p}\right|_{X} \rightarrow \Omega_{X}^{p} \rightarrow 0
\end{gathered}
$$

and cohomology of \mathbb{P}^{n}. This can be generalized as in [2] to compute the Hodge numbers of a smooth complete intersection $X \subset \mathbb{P}^{n}$ from the degrees d_{i} of the hypersurfaces.

Computing E-polynomials

Jesse Vogel

Setup: let $X \subset \mathbb{A}^{n}$ be the variety with ideal $I=\left(f_{1}, \ldots, f_{k}\right)$. Recursively compute $e(X)$ as follows:

Base cases

if $1 \in I$ then $e(X)=e(\varnothing)=0$ if $I=(0)$ then $e(X)=e\left(\mathbb{A}^{n}\right)=q^{n}$

Product varieties

if $F_{1}=\left\{f_{1}, \ldots, f_{m}\right\}$ and $F_{2}=\left\{f_{m+1}, \ldots, f_{k}\right\}$ do not share
variables, then $X=X_{1} \times X_{2}$, hence $e(X)=e\left(X_{1}\right) \cdot e\left(X_{2}\right)$

Factor equations

if $f_{i}=g h$ with g, h non-constant, then
$e(X)=e(X \cap\{g=0\})+e(X \cap\{h=0\})-e(X \cap\{g=h=0\})$

Linear equations

if $f_{i}=x g+h$ with g, h not containing x, then let Y be given by the f_{j}, for $j \neq i$, where x substituted for $-h / g$. Then

$$
e(X)=e(X \cap\{g=0\})+e(Y)-e(Y \cap\{g=0\})
$$

Blowups

if the singular locus $Z \subset X$ is non-empty, blow up X at Z, given by affine patches U_{i} and exceptional divisor E. Then

$$
e(X)=e(Z)+\sum_{i} e\left(U_{i}-\underset{j<i}{\cup} U_{j}-E\right)
$$

Rehomogenizing

if X is non-singular, but the projective closure $\bar{X} \subset \mathbb{P}^{n}$ is singular at another affine patch Y then

$$
e(X)=e(Y)+e(\bar{X}-Y)-e(\bar{X}-X)
$$

Smooth projective varieties
if X defines a smooth projective variety $\bar{X} \subset \mathbb{P}^{n}$, compute $e(X)$ from the Hodge numbers $h^{p, q}(X)=\operatorname{dim} H^{q}\left(X, \Omega_{X}^{p}\right)$

Application to representation varieties

Used in [3] to automize the computation of E-polynomials of G-representation varieties of closed surfaces

$$
\mathfrak{X}_{G}\left(\Sigma_{g}, G\right)=\operatorname{Hom}\left(\pi_{1}\left(\Sigma_{g}\right), G\right)
$$

using Topological Quantum Field Theory: the E-polynomials can be obtained from the powers of a (large) matrix of E-polynomials of smaller varieties, corresponding to a decomposition of bordisms

For $G=\mathbb{U}_{n}$ upper triangular matrices of ranks 2, 3 and 4:

$$
\begin{aligned}
& e\left(\mathfrak{X}_{\mathbb{U}_{2}}\left(\Sigma_{g}\right)\right)=q^{2 g-1}(q-1)^{2 g+1}\left((q-1)^{2 g-1}+1\right), \\
& e\left(\mathfrak{X}_{\mathbb{U}_{3}}\left(\Sigma_{g}\right)\right)=q^{3 g-3}(q-1)^{2 g}\left(q^{2}(q-1)^{2 g+1}+q^{3 g}(q-1)^{2}\right. \\
& \left.\quad+q^{3 g}(q-1)^{4 g}+2 q^{3 g}(q-1)^{2 g+1}\right), \\
& e\left(\mathfrak{X}_{\mathbb{U}_{4}}\left(\Sigma_{g}\right)\right)=q^{8 g-2}(q-1)^{4 g+2}+q^{8 g-2}(q-1)^{6 g+1} \\
& \quad+q^{10 g-4}(q-1)^{2 g+3}+q^{10 g-4}(q-1)^{4 g+1}\left(2 q^{2}-6 q+5\right)^{g} \\
& \quad+3 q^{10 g-4}(q-1)^{4 g+2}+q^{10 g-4}(q-1)^{6 g+1}+q^{12 g-6}(q-1)^{8 g} \\
& \quad+q^{12 g-6}(q-1)^{2 g+3}+3 q^{12 g-6}(q-1)^{4 g+2}+3 q^{12 g-6}(q-1)^{6 g+1}
\end{aligned}
$$

the latter requiring to evaluate ≈ 4000 E-polynomials.

What's next?

- Find more efficient methods for computing the Hodge numbers for non-complete intersections
- Prove the algorithm terminates, e.g. find a numerical invariant that decreases at each step
- Optimize the implementation

References

[1] Deligne, P., Théorie de Hodge III. Inst. Hautes Études Sci. Publ. Math. No. 44 (1974)
[2] SGA7 éxposé XI, théorème 2.3
3] Hablicsek, M., Vogel, J., Virtual classes of representation varieties of upper triangular matrices via topological quantum field theories (2020) arXiv:2008.06679

