E-polynomials
The Hodge polynomial of a smooth projective variety X over
Cis
P(X) = Z(_l)zﬂrq RPA (X)) uP?
Pd
with h?9(X) = dim HY(X, Q%) the Hodge numbers of X. It
satisfies
m scissor relation: P(X)=P(Z)+ P(X\Z) for ZCX a
closed subvariety
m multiplicativity: P(X xY) = P(X) - P(Y)
This polynomial extends uniquely to any variety over C via
the Grothendieck ring
e: K(Varc) — Z[u,v]
where e(X) is called the E-polynomial of X. Its coefficients

are given by the mixed Hodge numbers

(X) = dim Gr2.Gr)Y, H¥(X,C)
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of the mixed Hodge structure on the compactly supported
cohomology of X [1].

Examples
m e(A) = e(P') — e(pt) = wv =: g, the Lefschetz motive
me(P") =e(A") +e(A" ')+ +e(Al) +e(A?)
=q¢"+q¢" '+ +q+1
m To compute e(SL(2,C)) = e({ad — bc = 1}), decompose

s12,0) = fa=0b 20 2 ufaroa- T
a

to find e(SL(2,C)) = q(g— 1)+ ¢* (¢ —
d (b (be)  (a)

1)=¢>—gq.

Complete intersections

The Hodge numbers of a smooth hypersurface X ¢ P" of
degree d can be computed recursively from exact sequences

0— Q2 (—d) — Qly — Q% =0

and cohomology of P". This can be generalized as in [2] to

compute the Hodge numbers of a smooth complete

intersection X C P" from the degrees d; of the hypersurfaces.

Computing E-polynomials

Setup: let X C A" be the variety with ideal I = (fy,...
Recursively compute e(X) as follows:

Base cases

if 1 € I then e(X) =e(2) =0
if I = (0) then e(X) =e(A™) =4q"

Product varieties

it 1 ={f1,...,fm} and F» = {fini1,---, fr} do not share
variables, then X = X3 x X», hence e(X) = e(X1) - e(X2)
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» Factor equations

if f; = gh with g, h non-constant, then

e(X)=e(XN{g=0}) +e(XN{h=0})—e(XN{g=h =0}

Linear equations <

by the f;, for j # ¢, where x substituted for —h/g. Then
e(X) =e(XN{g=0})+e(Y)—e(Y n{g=0})

_

if fi = xg+ h with g, h not containing z, then let Y be given

» Blowups
if the singular locus Z C X is non-empty, blow up X at Z,

given by affine patches U; and exceptional divisor E. Then

e(X) :e(Z)JrZ:e(Ui - UUj—E>

j<i

~

J

Rehomogenizing <=

-

if X is non-singular, but the projective closure X ¢ P" is
singular at another affine patch Y then

e(X) =e(Y) +e<X—Y) —e(X—X)

;V Smooth projective varieties

if X defines a smooth projective variety X c P*, compute
e(X) from the Hodge numbers h?4(X) = dim H?(X, Q%)
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Application to representation varieties

Used in [3] to automize the computation of E-polynomials of

G-representation varieties of closed surfaces

X¢(3y, G) = Hom(m(Xy), G)
using Topological Quantum Field Theory: the E-polynomials
can be obtained from the powers of a (large) matrix of
E-polynomials of smaller varieties, corresponding to a

decomposition of bordisms
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g times

For G = U,, upper triangular matrices of ranks 2,3 and 4:
e(Xu,(Bg) = ¢ g — D ((¢ - D> ' + 1),

e(Xu,(Bg)) = ¢* (g — 1)¥(q%(qg — 1) + ¢*(q — 1)?
+¢%(q — 1)% + 2¢%(q — 1)%11),

e(Xu,(8g) = ¢% (g — 1) +¢% (g — 1)™"
+¢074 (g — 1) 1 ¢4 (g — 1) (2¢” — 6¢ + 5)°
+3¢0 (g — 1" 4 1097 (g — 1) 4 %70 (g — 1)
+¢'%97%(q = 1) 4 3¢"970(q — 1) 4 3¢90 (g — 1),

the latter requiring to evaluate =~ 4000 E-polynomials.

What's next?

m Find more efficient methods for computing the Hodge
numbers for non-complete intersections

m Prove the algorithm terminates, e.g. find a numerical
invariant that decreases at each step

®m Optimize the implementation
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